

WZB

Automated scaling of texts

- Scaling techniques ...

- ... automatically distribute documents across a latent (underlying) scale (dimension)
- ... are used to infer the position of a document's author
- \dots were mainly developed in studying the ideological positions that drive party manifestos or political speeches (left-right dimension)
- ... are increasingly applied to other questions such as lobbying success, e.g.

- Basic idea

Estimate text positions by focussing on language that discriminates most strongly among the texts (i.e. give strong weight to terms that occur very frequently in some texts but only very infrequently in others)

2

WZB

Unsupervised scaling

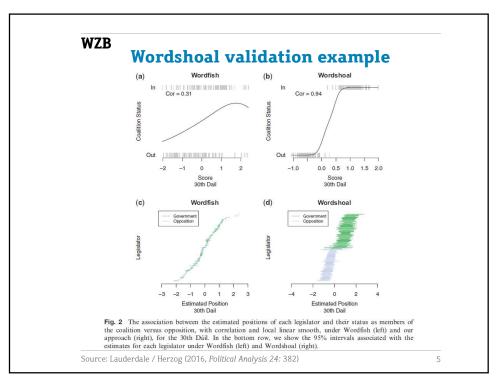
- Wordfish (Slapin and Proksch 2008)
 - $\circ\;$ Assumes that there is only exactly one latent dimension structuring the text corpus!
 - $\circ\;$ Algorithm weights term frequencies so that that there is a maximum distance between the texts in the corpus
 - o Rare terms influence the results strongly
 - o Resulting positions can only be interpreted relative to each other
 - o Content of the scale has to be interpreted ex-post

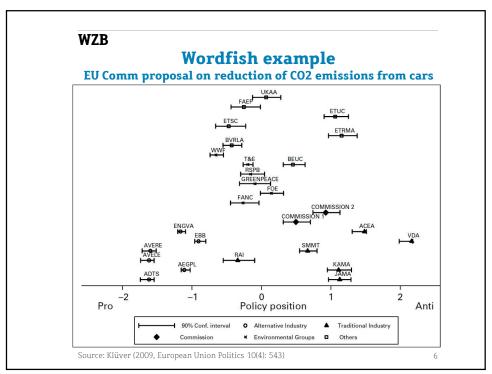
Wordshoal (Lauderdale and Herzog 2016)

- o Two-stage approach:
 - 1. Scale variation in word usage with Wordfish for specific 'debates' 2. Use factor analysis to construct a common scale across debates
- o Relaxes assumption of uni-dimensionality
 Discriminating power of individual words may vary across debates
- o Geared more towards scaling latent *actor* rather than *text* positions
- o Still unsupervised, interpretation only ex-post

3

3





WZB

Supervised scaling

- Wordscores (Laver, Benoit and Garry 2003)
 - Researcher supplies reference texts with 'known' values across the latent scale(s)
 - Algorithm retrieves and weights the relative term frequencies in these texts
 - Virgin texts are then positioned on the latent dimension along the weights of the terms they contain
 - o Cf. machine learning in Session 4

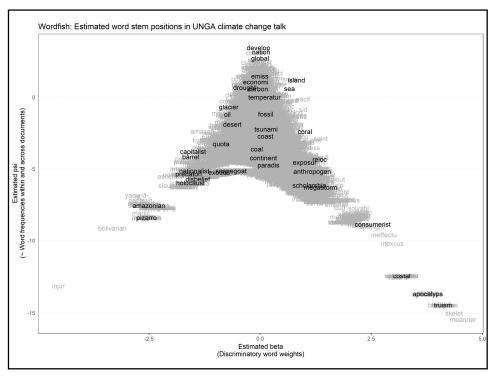
7

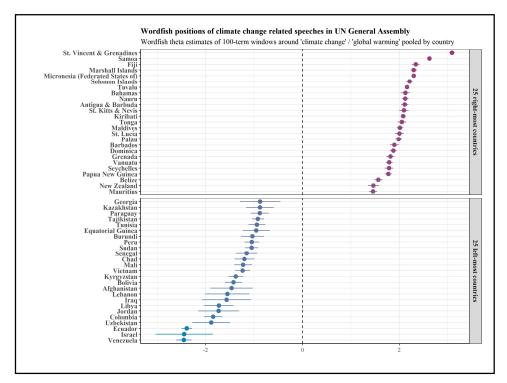
7

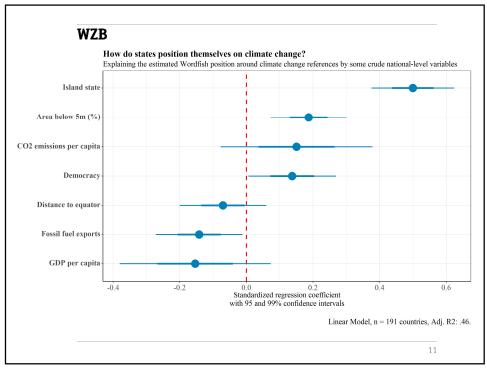
WZB

Applying Wordfish to our running example

- What differentiates national delegates in the United Nations General Assembly according to the relative frequency of words they use when speaking about climate change?
- ➤ And: Does this meaningfully capture expressed political *positions* on climate change issues?
- Approach
- > Apply the Wordfish algorithm (as implemented in *quanteda*) to the corpus of 100-term window around climate change references aggregated to country (!pre-processing!)
- > Scrutinize term weights ('betas') and document positions ('thetas')





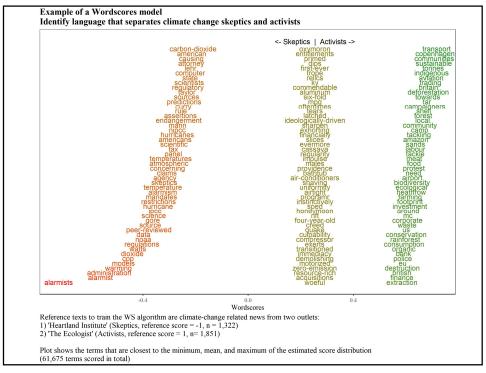


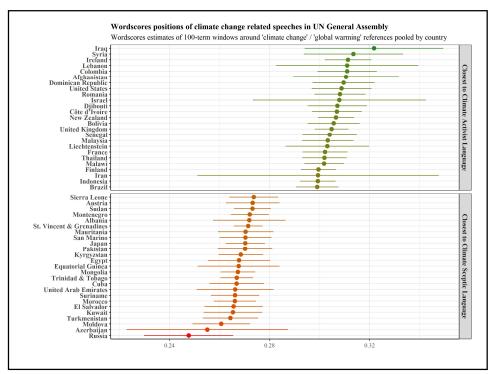
WZB

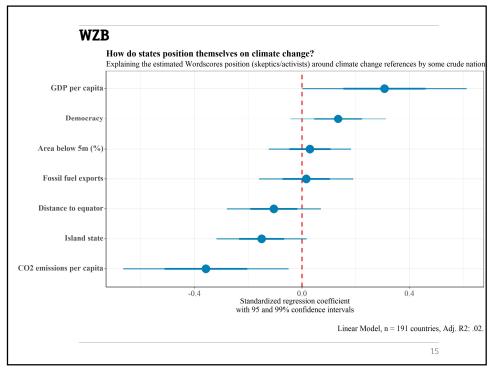
Applying Wordscores to our running example

- In how far do speeches of national delegates in the UNGA use language of climate sceptics or climate activists?
- ➤ And: Does this meaningfully capture expressed political *positions* on climate change issues?
- Approach
- o Corpus of 3000+ reference texts: scrape climate-change related news (!) from websites of *The Heartland Institute* (climate change sceptics or deniers; reference score: -1) and *The Ecologist* (climate activists; +1)
- o Train a Wordscores model via *quanteda* on this corpus and analyze the resulting term weights
- Scale UNGA speeches (pooled by country) along this model and see whether we find something meaningful

12







WZB

Pitfalls of automated scaling

- Scaling works only:
 - o with documents that are very focussed on the theorized dimension (cf. party manifestos vs. newspaper articles)
 - o if documents come from the same context in which the language is used identically (political speeches vs. news outlets?)
- $\Rightarrow \textbf{Scaling procedures make strong assumptions!}$
- \Rightarrow Scaling procedures require particularly careful validation!

16